- Ремонт блока питания для светодиодной ленты
- Ремонт блока питания для светодиодной ленты
- Схема, блок питания для светодиодной ленты
- Как проверить TL494 без осциллографа?
- Выбор и подключение блока питания для светодиодной ленты 12 В
- Схема питания светодиодных лент — схема блока питания
- Куда спрятать блок питания светодиодной ленты?
- Блок питания для светодиодной ленты – виды и особенности
- Как рассчитать мощность блока питания?
- Популярные модели блоков питания для подключения светодиодных полос
- Схемотехника блоков питания для светодиодных лент и не только
Ремонт блока питания для светодиодной ленты
Дата: 28.12.2015 // 0 Комментариев
Используя светодиодное освещение, многие радуются лишь до тех пор, пока оно исправно работает. Поломка блока питания светодиодной ленты может не только огорчить, но и ударить немного по карману. Сегодня мы рассмотрим ремонт блока питания для светодиодной ленты, типичные его неисправности и методики их устранения.
Ремонт блока питания для светодиодной ленты
Зачастую все дешевые китайские блоки питания для светодиодных лент выглядят примерно так. Стоит ли браться за ремонт такого блока? Стоит однозначно!
Как правило, если плата блока питания целая, и не превратилась в кусок обуглившегося радио-хлама, то ремонту такой блок подлежит.
Схема, блок питания для светодиодной ленты
Схемы в таких блоках почти всегда одинаковые, для наглядности можно пользоваться схемой изображенной ниже. Типичная схема, которая используется в подобных блоках питания.
Основные неисправности в этих блоках питания:
Для начала вскрываем наш блок и осматриваем предохранитель. Если он целый, подаем питание и измеряем напряжение на конденсаторах С22, С23. Оно должно быть порядка 310 В. Если напряжение такое, значит сетевой фильтр и выпрямители исправны.
Следующим этапом станет проверка ШИМ. У нашего блока это микросхема КА7500.
— на 12 выводе должно быть около 12-30 В. Если нет, проверяем дежурку. Если есть – проверяем микросхему.
— на 14 выводе должно быть около +5 В.
Если нет, меняем микросхему. Если есть – проверяем микросхему осциллографом согласно схеме.
Как проверить TL494 без осциллографа?
Если нет осциллографа, рекомендуем взять заведомо рабочий блок питания, установить вместо микросхемы DIP панель, куда можно подключать проверяемые ШИМ контроллеры. Это единственный достоверный и вменяемый способ проверки TL494 без осциллографа.
Наша микросхема КА7500 после проверки, оказалась неисправной. Перед установкой нового ШИМ контроллера устанавливаем DIP панель.
На фото мы подготовили все для замены ШИМ.
Меняем ее на аналог TL494CN.
Следующим этапом станет небольшая модернизация блока. Если внимательно осмотреть сетевой фильтр есть место для установки варистора.
Устанавливаем варистор К275. Он будет защищать блок от скачков высокого напряжения. При коротком скачке – варистор поглощает энергию импульса, а при длительном – сопротивление варистора станет настолько малым, что сработает предохранитель и вся схема блока останется целой.
Блок перед финальным тестом.
После замены неисправных компонентов подключаем блок в сеть. Как видим блок прекрасно работает. Подстроечным резистором Р1 (возле зеленого светодиода) можно точно выставить выходное напряжение на блоке питание. Диапазон корректировки лежит в пределах от 11,65 В. до 13,25 В.
Как видим все работает исправно, ремонт блока питания для светодиодной ленты окончен. Учитывая, что в блоке отсутствует активная система охлаждения, рационально установить на крышку блока дополнительный кулер, закрытый сеткой в виде гриля.
Важно! При ремонте блока многие его компоненты находятся под опасным для жизни напряжением. Не стоит проводить манипуляции без достаточных знаний и навыков!
Источник
Выбор и подключение блока питания для светодиодной ленты 12 В
Для подключения потребителей электрической энергии в России действующими стандартами предусмотрена сеть переменного тока 220/380V 50Гц. Поскольку питание светодиодных лент осуществляется от импульсного стабилизированного источника с напряжением 24 или 12V, необходим прибор, преобразующий высокое переменное напряжение в более низкое.
Блок питания для светодиодной ленты Фото
Любая из имеющихся в продаже моделей допускает эксплуатацию подсветки в широких температурных пределах, хорошо сглаживает импульсные помехи и имеет корпус, защищающий внутренние элементы от механических повреждений.
Схема питания светодиодных лент — схема блока питания
Подключить питание светодиодной ленты своими руками не так уж и сложно. Главное – в точности следовать советам, изложенным ниже.
Перед покупкой той или иной модели выпрямителя (БП) необходимо разобраться с вопросом как подключить светодиодную ленту к блоку питания.
Светодиодные ленты можно подключить к источнику электроэнергии различными способами. При точном соблюдении схемы питания светодиодных лент даже один мощный прибор способен обеспечить работу как одной, так и нескольких подсветок.
Для параллельного подключения второй светодиодной полоски к одному блоку потребуется дополнительный удлинитель – провод, сечение которого составляет не менее 1,5 мм. Соблюдая полярность, один его конец подключается к выходу БП, второй – к полосе №2. В этом случае ток будет подаваться не по дорожкам первой подсветки, а по подсоединенному проводу.
Когда применение крупногабаритного мощного БП неприемлемо, используются маломощные блоки питания для светодиодных лент 12 вольт. Схема подключения предусматривает наличие отдельного БП для каждой полосы диодов. Здесь также понадобится удлинитель – провод, подключаемый к сети 220 V и к конкретной ленте, но его сечение может быть меньше – достаточно 0,75 мм. Хотя в данном случае монтаж более сложный, подобная схема подключения часто применяется на практике, поскольку предусматривает использование БП небольших габаритов.
Куда спрятать блок питания светодиодной ленты?
Место для размещения БП подбирается с учетом:
Подходящими вариантами для размещения крупного БП могут быть специально проделанное отверстие в мебели или отдельная полка на стене, оборудованная с не просматриваемой стороны стола.
блоки питания для светодиодных лент 12 вольт
В случае с малогабаритными блоками питания (не более 250х150х100 мм) все намного проще:
Блок питания для светодиодной ленты – виды и особенности
Негерметичные или открытые блоки мощностью в 100 Вт используются для питания потребителей в закрытых жилых и нежилых помещениях. Приборы этого типа легко определить: как правило, они отличаются самыми большими размерами и весом, имеют соответствующую маркировку IP20.
Стенки корпуса предусматривают перфорацию, обеспечивающую отвод тепла, изготавливаются из пластика или листового металла. Область применения: питание аппаратуры. Место для размещения: специальные шкафы или аппаратные ниши.
блок питания для светодиодной ленты 12в
Полугерметичные (всепогодные) БП можно отнести к разряду универсальных приспособлений. Приборы используются как в закрытых помещениях, так и на улице. Блок применяется дляпитания для светодиодной ленты 12в,имеет степень защиты IP54 и корпус из листового металла.
Как рассчитать мощность блока питания?
Мощность блока питания для светодиодной ленты зависит от подключаемой к нему нагрузки. Если для небольших потребителей достаточно БП на 40 Вт, то для более солидных конструкций может понадобиться прибор, мощность которого достигает 0,5 кВт.
Для грамотного расчета мощности БП необходимо знать:
1. Определяем общую нагрузку. Для этого потребляемую мощность 1 метра умножаем на метраж светодиодной ленты.
2. Для точного расчета мощности БП общую нагрузку умножаем на коэффициент запаса kз.
Поскольку в схеме подключения присутствуеттакой элемент, как RGB контроллер, конечный параметр мощности БП определяется с учетом мощности контролера – ее значение обычно не превышает 5 Вт.
Популярные модели блоков питания для подключения светодиодных полос
Современная промышленность предлагает потребителю широкий выбор блоков питания для подключения светодиодных полос. Блок питания для подключения групп светодиодов подбирается с учетом параметров напряжения, необходимого для работы подсветки (12 или 24 V соответственно), требуемой мощности и места эксплуатации.
Модель PV-15.
Самый маломощный импульсный блок питания для светодиодной ленты 12в мощностью 15 Вт, используется для подключения ленты, рассчитанной на напряжение 12 вольт. Имеет влагозащищенный алюминиевый корпуси встроенный сетевой фильтр, защищающий от перепадов напряжения. Расчетное время эксплуатации превышает 200 тысяч часов. Оптимальный вариант для размещения на улице. Цена изделия составляет 560 руб. за штуку.
Модель PV-40.
По конструкции – аналог PV-15 с увеличенными параметрами мощности – 40 Вт. Предназначен для подключения лент светодиодов, работающих от напряжения24/12 вольт. PV-40 – блок светодиодной ленты по ценев пределах 1000 рублей.
Модель LV-50.
Особенность конструкции – герметичный пластиковый корпус. Импульсный блок питания имеет защиту от перепадов напряжения, короткого замыкания в сети и предназначен для эксплуатации в уличных условиях.
Встроенный сетевой фильтр обеспечивает устойчивую работу блока в условиях российских электрических сетей. Эксплуатируется при температурах от минус 25 до плюс 40 градусов по Цельсию. Время наработки – более 200 тысяч часов. Цена изделия – 1050 рублей.
Модель LPV-100.
Импульсный блок питания средней мощности – 100 Вт. Предназначен для подключения лент с напряжением 24/12 вольт, имеет герметичную конструкцию и корпус из алюминия. Для изделия характерна защита от перенапряжения, перегрузки, КЗ. Идеально подходит для устойчивой работы в условиях российских электрических сетей. Расчетный период эксплуатации – более 200 тысяч часов. LPV-100– качественный блок питания для светодиодной ленты, цена которого не превышает 2250 рублей.
Модель SUN-400.
Блок питания повышенной мощности импульсного типа – отличное решение для обеспечения работы светодиодных лент. Обладает защитой от КЗ, перепадов напряжения. Принцип охлаждения – свободная конвекция воздуха. Обеспечивает работу лент, рассчитанных нанапряжение24/12 вольт в закрытых помещениях, мощность – 400 Вт. Успешно прошел испытания на работоспособность в условиях российских электрических сетей. Цена изделия – 3600 рублей.
Источник
Схемотехника блоков питания для светодиодных лент и не только
Светодиоды заменяют таким типы источников света, такие как люминесцентные лампы и лампы накаливания. Практически в каждом доме уже есть светодиодные лампы, они потребляют гораздо меньше двух своих предшественников (до 10 раз меньше чем лампы накаливания и от 2 до 5 раз меньше, чем КЛЛ или энергосберегающие люминесцентные лампы). В ситуациях, когда необходим длинный источник света, или нужно организовать подсветку сложной формы в ход идёт светодиодная лента.
Led лента идеальна для целого ряда ситуаций, главное её преимущество перед отдельными светодиодами и светодиодными матрицами являются источники питания. Их легче найти в продаже почти в любом магазине электротоваров, в отличие от драйверов для мощных светодиодов, к тому же подбор блока питания осуществляется только по потребляемой мощности, т.к. подавляющее большинство светодиодных лент имеют напряжение питания в 12 Вольт.
В то время как для мощных светодиодов и модулей при выборе источника питания нужно искать именно источник тока с требуемой мощностью и номинальным током, т.е. учитывать 2 параметра, что усложняет подбор.
В этой статье рассмотрены типовые схемы блоков питания и их узлы, а также советы по их ремонту для начинающих радиолюбителей и электриков.
Содержание статьи
Типы и требования к источникам питания для светодиодных лент и 12 В led ламп
Основное требование к источнику питания как для светодиодов, так и для светодиодных лент – качественная стабилизация напряжения/тока, вне зависимости от скачков сетевого напряжения, а также низкие выходные пульсации.
По типу исполнения блоки питания для LED продукции различают:
Герметичные. Они сложнее в ремонте, корпус не всегда поддаётся аккуратной разборке, а внутри и вовсе может быть залит герметиком или компаундом.
Негерметичные, для применения в помещении. Лучше поддаются ремонту, т.к. плата изымается после откручивания нескольких винтов.
По типу охлаждения:
Пассивное воздушное. Блок питания охлаждается за счёт естественной конвекции воздуха через перфорацию его корпуса. Недостаток – невозможность достигнуть высоких мощностей сохранив массогабаритные показатели;
Активное воздушное. Блок питания охлаждается с помощью кулера (небольшого вентилятора, как устанавливают на системных блоках ПК). Такой тип охлаждения позволяет достичь большей мощности при аналогичных размерах с пассивным блоком питания.
Схемы блоков питания для светодиодных лент
Стоит понимать, что нет в электронике такого понятия как «блок питания для светодиодной ленты», в принципе к любому устройству подойдёт любой блок питания с подходящим напряжением и током большим чем потребляемый прибором. Это значит, что информация описанная ниже применима к практически любым блокам питания.
Однако в обиходе проще говорить о блоке питания по его предназначению для конкретного устройства.
Общая структура импульсного блока питания
Для питания светодиодных лент и другой техники последние десятилетия применяются импульсные блоки питания (ИБП). Они отличаются от трансформаторных тем, что работают не на частоте питающего напряжения (50 Гц), а на высоких частотах (десятки и сотни килогерц).
Поэтому для его работы нужен генератор высокой частоты, в дешевых и рассчитанных на малые токи (единицы ампер) блоках питания часто встречается автогенераторная схема, она применяется в:
электронных балластах для люминесцентных ламп;
зарядных устройствах для мобильного телефона;
дешевых ИБП для светодиодных лент (10-20 вт) и других устройствах.
Схему подобного блока питания можно увидеть на рисунке (для увеличения нажмите на картинку):
Его структура следующая:
1. Голубым цветом выделен диодный мост, стоящий на входе блока питания он выпрямляет входное переменное напряжение, для питания следующих узлов постоянным напряжением величиной 220*1.41=310 В. В случае поломки – проверьте наличие и величину напряжения ДО моста и ПОСЛЕ него, если оно отсутствует – потребуется замена диодов или моста, если он собран в отельном корпусе.
На схеме не указан, но по линии 220 В может присутствовать предохранитель или низкоомный резистор, прежде чем приступать к ремонту проверьте его целостность.
2. Коричневым обведен фильтр пульсаций, его главным элементом является C4 – электролитический конденсатор. Его ёмкость зависит от того, насколько сэкономил производитель, обычно до 220 мкФ на 400 Вольт. L1 – фильтр пульсаций и электромагнитных помех, которые возникают при работе импульсного блока питания. В большинстве дешевых блоков питания он отсутствует.
3. Зеленым цветом выделена силовая часть VT1 силовой транзистор, в данном случае полевой, но может быть и биполярный. T1 – импульсный трансформатор с тремя обмотками: первичной, вторичной и базовой.
Третья обмотка необходима для генерации высокочастотных колебаний – если интересен принцип работы автогенераторного блока питания лучше прочитать книги Моина, Зиновьева и другие учебники по источникам питания импульсного типа.
Импульсные трансформаторы гораздо меньше по габаритам, чем сетевые, опять же из-за работы на высоких частотах и выполнены не из железа, а из феррита. Чаще всего выходит из строя силовой ключ.
Прозвоните транзистор мультиметром в режиме проверки диодов, и вы сразу обнаружите его пробой или обрыв. Остальные элементы – это обвязка этого узла, по отдельности редко выходит из строя, в основном вслед за силовым транзистором. Однако всегда стоит убедиться в соответствии номинальным значениям резисторов и конденсаторов.
Диоды в обвязке трансформатора VD7 и VD5 выполняют роль снаббера защищая цепи от всплесков противо-ЭДС, в моменты переключения транзистора. Являются тоже довольно нагруженным и ответственным узлом.
4. Красным цветом выделена цепочка обратной связи по напряжению на базе регулируемого стабилитрона TL431 и их аналогов (любые буквы в обозначении с цифрами «431»). Дополнительная информация про TL431: Легендарные аналоговые микросхемы
В состав ОС включена оптопара U1, с её помощью в силовую часть автогенератора поступает сигнал с выхода и поддерживается стабильное выходное напряжение. В выходной части может отсутствовать напряжение из-за обрыва диода VD8, часто это сборка Шоттки, подлежит замене. Также часто вызывает проблемы вздутый электролитический конденсатор C10.
Как вы видите всё работает с гораздо меньшим количеством элементов, надёжность соответствующая…
Подборка материалов про виды, устройство и схемы светодиодных лент:
Ремонт светодиодных лент:
Более дорогие блоки питания
Схемы, которые вы увидите ниже часто встречаются в блоках питания для светодиодных лент, DVD-проигрывателей, магнитол и других маломощных устройств (десятки Ватт).
Прежде чем перейти к рассмотрению популярных схем, ознакомьтесь со структурой импульсного блока питания с ШИМ-контроллером.
Верхняя часть схемы отвечает за фильтрацию, выпрямление и сглаживание пульсаций сетевого напряжения 220, по сути аналогична как в предыдущем типе, так и в последующих.
Самое интересное – это блок ШИМ, сердце любого достойного блока питания. ШИМ-контроллер – это устройство управляющие коэффициентом заполнения импульсов выходного сигнала на основании уставки, определенной пользователем или обратной связи по току или напряжению. ШИМ может управлять как мощностью нагрузки с помощью полевого (биполярного, IGBT) ключа, так и полупроводниковым управляемым ключом в составе преобразователя с трансформатором или дросселем.
Изменяя ширину импульсов при заданной частоте – вы изменяете и действующее значение напряжение, сохраняя при этом амплитудное, вы можете проинтегрировать его с помощью C- и LC-цепей для устранения пульсаций. Такой метод называется Широтно-Импульсное Моделирование, то есть моделирование сигнала за счёт ширины импульсов (скважности/коэффициента заполнения) при постоянной их частоте.
На английском языке это звучит, как PWM-controller, или Pulse-Width Modulation controller.
На рисунке изображен биполярный ШИМ. Прямоугольные сигналы – это сигналы управления на транзисторах с контроллера, пунктиром изображена форма напряжения в нагрузке этих ключей – действующее напряжение.
Более качественные блоки питания малой средней мощности часто построены на интегральных ШИМ-котроллерах со встроенным силовым ключом. Преимущества перед автогенераторной схемой:
Рабочая частота преобразователя не зависит ни от нагрузки, ни от напряжения питания;
Более качественная стабилизация выходных параметров;
Ниже будут расположены несколько типовых схем блоков питания (для увеличения нажмите на картинку):
Здесь RM6203 – и контроллер и ключ в одном корпусе.
В этой схеме используется внешний MOSFET ключ.
То же самое, но на другой микросхеме.
Обратная связь осуществляется с помощью резистора, иногда оптопары подключенной к входу с названием Sense (датчик) или Feedback (обратная связь). Ремонт таких блоков питания в общем аналогичен. Если все элементы исправны, и напряжение питания поступает на микросхему (ножка Vdd или Vcc), значит дело скорее всего в ней, более точно можно определить с помощью осциллографа просмотрев сигналы на выходе (ножка drain, gate).
Практически всегда заменить такой контроллер можно любым аналогом с подобной структурой, для этого нужно сверить datasheet на тот, что установлен на плате и тот, что у вас в наличии и впаять, соблюдая распиновку, как это изображено на следующих фотографиях.
Или вот схематически изображена замена подобных микросхем.
Мощные и дорогие блоки питания
Блоки питания для светодиодных лент, а также некоторые блоки питания для ноутбуков выполняются на ШИМ-контроллере UC3842.
Однако более подробная и точная диагностика возможна лишь с использованием осциллографа, в противном случае – проверьте короткие замыкания платы, пайку элементов и обрывы дороже. Может помочь замена подозрительных узлов на заведомо рабочие.
Более совершенные модели источников питания для светодиодных лент выполнены на практически легендарной микросхеме TL494 (любые буквы с цифрами «494») или её аналоге KA7500. Кстати на этих же контроллерах построено большинство компьютерных блоков питания AT и ATX.
Вот типовая схема блока питания на этом ШИМ-контроллере (нажмите на схему):
Такие блоки питания отличаются высокой надёжностью и стабильностью работы.
Краткий алгоритм проверки:
1. Запитываем микросхему согласно распиновки от внешнего источника питания 12-15 вольт (12 ножка – плюс, а на 7 ножку – минус).
3. На 5 выводе должно быть пилообразное напряжение «увидеть» его можно только с помощью осциллографа. Если его нет или форма искажена – проверяем соответствие номинальным значениям времязадающей RC-цепи, которая подключена к 5 и 6 выводам, если нет – на схеме это R39 и C35, их под замену, если после этого ничего не изменилось – микросхема вышла из строя.
4. На выходах 8 и 11 должны быть прямоугольные импульсы, но их может не быть из-за конкретной схемы реализации обратной связи (выводы 1-2 и 15-16). Если выключить и подключить 220 В, на какое-то время они там появятся и блок снова уйдёт в защиту – это признак исправной микросхемы.
5. Проверить ШИМ можно закоротив 4 и 7 ножку, ширина импульсов увеличится, а закоротив 4 на 14 ножки – импульсы исчезнут. Если у вас получились другие результаты – проблема в МС.
Хоть и посвящена она компьютерным блоками питания, но там много полезной информации для любого радиолюбителя.
Вывод
Схемотехника блоков питания для светодиодных лент аналогична любым блокам питания с подобными характеристиками, довольно хорошо поддаётся ремонту, модернизации и перестройки на необходимые напряжения, разумеется, в разумных пределах.
Источник